
BizMC: A Lua Framework for running Monte Carlo Tree
Search in the BizHawk emulator
William R. Armstrong1, Markus Eger1,*

1Cal Poly Pomona, Pomona, CA, USA

Abstract
Applying existing or new AI techniques to games often involves either utilizing or creating an open-source implementation
of the game to access its internals, or using the graphical output as an AI agent’s input. In this paper, we explore reverse-
engineering as a third approach. We describe how an open-source emulator for arcade and console games can be extended to
instrument games available only as binaries, and made available for use in AI research. While still requiring some effort for
each game, we aim to provide a consistent interface across multiple games that can then be used by AI agents. We show
preliminary results of applying this method to three games from different eras and released for different consoles, that are all
supported by the underlying emulator.

Keywords
Monte Carlo Tree Search, Console Games, Reverse Engineering

1. Introduction
Classic arcade and console games have long been a sta-
ple for game AI benchmarks. While some recent trends
move towards playing these games by using the contents
of the screen as the input for the AI agent, “like a hu-
man player would play”, being able to use the games’
internal data representation directly is still of interest
in the development of new approaches to AI, as well as
to test the applicability of existing approaches to new
domains. Additionally, while many games present the
relevant game state on a single screen, more complex
games, such as strategy games, may require navigating
different views or menus, or controlling a viewport into
the game world. Having direct access to the underlying
data may enable development of AI techniques without
having to also learn this UI navigation. One AI approach
that has successfully been applied to a variety of games,
including several strategy games, is Monte Carlo Tree
Search (MCTS) and its variations. However, in order to
do so, one typically needs to have the target domain in
a suitable form, which includes the ability to perform a
forward simulation. Existing arcade and console games
often do not exist in such a form, and may not be avail-
able in source code form, making such an adaptation
challenging.

In our work, we present a framework that addresses
both sides of this challenge: First, we provide a structured
method to instrument existing game code that may only
exist in binary form. While this still requires manual

Workshop on Experimental AI in Games
*Corresponding author.
$ wrarmstrong@cpp.edu (W. R. Armstrong); meger@cpp.edu
(M. Eger)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

effort to disassemble the code and navigate its structure,
we provide some guidance on how to ease these efforts,
and expose the games in a common structure. Second,
we show how this exposed structure can be used as an
interface to apply Monte Carlo Tree Search to a variety
of these games. While our experiments focus on MCTS
and strategy games, our approach enables applying other
AI techniques to these same games and compare to this
baseline, or to use MCTS for other games running on the
same emulator in the future.

2. Background
Arcade and console games draw a lot of attention from
the AI research community, because they provide a wide
variety of challenges, while being simple enough to be
studied in isolation, with Pac-Man perhaps being the
most widely studied one [1]. While games are useful
to develop, study and evaluate AI techniques [2], care
must be taken to not over-specialize [3]. A recent de-
velopment has therefore been to provide a variety of
games in a single environment, such as the Arcade Learn-
ing Environment (ALE) [4]. ALE, in particular, utilizes
an emulator for the Atari 2600 and provides access to
hundreds of Atari games as a development environment
for AI techniques. However, game state observations
in ALE are only available in two “flavors”: Either the
agent gets access to the screen (with some optional ob-
ject recognition/classification), or they get access to the
entire contents of the RAM, i.e. the raw bit represen-
tation of the game state. While the RAM on the Atari
2600 is only 128 bytes/1024 bits in size, making this state
rather compact, this approach would not scale well to
more modern consoles. The Nintendo Entertainment
System (NES), in comparison, already had 2kB of RAM,

mailto:wrarmstrong@cpp.edu
mailto:meger@cpp.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

while the Game Boy Advance (GBA) uses a more complex
architecture consisting of 32kB of RAM plus another 96
kB of video RAM. When trying to apply AI techniques to
the game state directly, these sizes become prohibitive,
and require an additional layer that extracts the relevant
information from within this sea of bytes. Unfortunately,
this requires significant effort. Our approach aims to fill
this gap and provide means to create this layer. As an al-
ternative to using an existing implementation of a game,
approaches have been proposed to describe the games of
interest in a dedicated language, such as the Video Game
Description Language (VGDL, Schaul 5). By having the
game description in a common format, an AI agent can
access the internal game state via the VGDL interpreter.
This, of course, requires porting each domain of interest
to VGDL, which may not support all necessary features,
and requires significant manual effort. There has been
interest in generating VGDL rules [6], and it may be fea-
sible to use a similar approach for game porting, but this
remains an open problem. Our approach addresses this
gap by providing a structured way to instrument existing
console games in an open source emulator. On one hand
this enables the use of significantly more complex games
for game AI research, including games released on the
NES and the GBA. On the other hand, while the process
is not entirely automated, it requires significantly less
effort than a complete rewrite or reverse engineering
of the game, by focusing on the aspects that are most
relevant to the AI agents.

One notable family of algorithms for game AI agents
are tree search approaches, which have been applied to
games almost since the beginnings of modern AI research,
with one of the earliest AI programs ever written being
Samuel’s checkers agent [7]. One of the challenges tree
search approaches encounter is that the tree grows expo-
nentially with the number of available actions. Samuel
used a variant of what is called alpha-beta-pruning to
remove branches from the tree that are not relevant, but
even with such pruning computing “pure” game trees
is not feasible for most games. Abramson combined a
Monte Carlo approach with game tree search, result-
ing in what is now known as Monte Carlo Tree Search
(MCTS), which we will describe in more detail below
[8]. This approach has become highly successful, lead-
ing to the development of AI agents for games ranging
from Backgammon [9] to Go [10], often augmented by
other techniques such as Neural Networks. MCTS is so
ubiquitous that many game AI frameworks provide it as
a baseline, including aforementioned ALE, or systems
like TAG [11]. Our approach, similarly, uses MCTS to
demonstrate how our instrumentation of the games can
be used to develop AI agents and provide a baseline for
future work.

BizHawk [12] is an open-source, multi-target emula-
tor that supports over 20 consoles including the Atari

2600, the NES, the GBA, and the Nintendo 64. It supports
scripting in Lua, which we utilized to implement our in-
strumentation code. It has also been used in academic
research, with agents learning to play games using the
pixels on the screen [13, 14]. As noted above, the goal of
our approach is to provide access to the actual game state,
in order to facilitate development of AI methods that do
not work off of pixel-input. In particular, BizHawk origi-
nates in, and is popular with, the Tool-Assisted Speedrun
community, and our work was motivated in part to find
better strategies for complex games that could be used
in a speed run.

3. Approach
Our approach consists of two parts: First, we need to
instrument a target game to access its internal game state.
Second, we use this game state representation to perform
a Monte Carlo Tree Search to find the best possible option.
The approach is designed modular, so that adding a new
game only consists of extracting its game state. While
this process is not automated, we will describe several
aides we provide and utilize in order to speed up some
of the more tedious tasks.

3.1. Game Modules
A BizMC game module requires the following function
definitions:

• perform(string action): instructs the game to
perform a specific action given its string descrip-
tion. These string names are descriptive and en-
code specific parameters to the action. For exam-
ple, perform("Move_1_2_3") may describe mov-
ing Unit #1 to coordinate position 2, 3.

• expand(node N): reads the current memory state
of BizHawk to determine all of the actions that
can be performed, then populates a list of child
nodes associated with these actions.

• rollout(): performs a rollout strategy for the
MCTS which plays the game until some end state
has been reached. For most of the modules devel-
oped, the rollout function simply selects random
actions, but more sophisticated behavior may be
defined.

• score(): returns a numerical valuation of how
"good" the current game state is. For example,
if the goal is to find a battle strategy that ac-
quires the most gold, then this function would
simply retrieve that value from memory. If the
goal was instead to complete the battle in the
shortest amount of time, it would return a value
based on the emulator’s current frame count.

Figure 1: A screenshot of the BizHawk RAM Search
window

In addition, it is necessary to define when the game has
reached an end-state (either success or failure). BizHawk
allows for assigning callback functions to a particular
breakpoint such that they are called when a particular
game instruction is called. By locating instructions that
are associated with such a state - for example, an in-
struction to play a specific sound effect when the player
character has died, or conversely, an instruction to trigger
the ending cutscene if the player has won - the callback
function will set an end flag visible by the MCTS.

In order to define these functions, it is necessary to
reverse-engineer relevant memory and code addresses
from the game. This is typically the most time-consuming
part of developing modules and requires the most special-
ized knowledge. There are several utilities which ease in
the process of locating these addresses:

• RAMSearch: This is useful for locating a specific
memory address by filtering RAM values based
on specific criteria, as shown in figure 1. For
example, locating the address for the player’s x-
value can be done by moving the character right,
then filtering for which values have increased
since the last scan.

• Debugger: This allows for locating relevant seg-
ments of code by setting breakpoints, which allow
execution to pause when a specific memory ad-
dress is written to or read.

• Hex Editor: Allows for direct manipulation of
in-game memory values. This is another useful
tool for identifying memory addresses through
trial-and-error, as the effects of these changes will
be immediately noticeable.

• Code-Data Logger: Outputs a full listing of in-
structions executed during a time interval to an
external file, as wall as all register values and CPU
flags. This helps in identifying the entry points
of in-game functions and for identifying every
single time a particular memory address was read
or written to during that time.

Figure 2: A screenshot of the Ghidra Decompiler used to
examine a function in Onimusha Tactics

In addition to BizHawk, the built-in debuggers for the
emulators fceux and Stella were used to assist in reverse-
engineering for the NES and Atari 2600, respectively.
Ghidra, an open source reverse-engineering tool shown
in figure 2, [15] also proved to be extremely useful in
static code analysis for developing our modules, as it has
a powerful decompiler which converts bytecode back to
C-like source code, which is extremely useful for compre-
hending control flow. Custom loaders have been written
for platforms like Game Boy Advance [16] which will
properly label memory regions and set a correct entry
point when a GBA ROM file is loaded.

3.2. Monte Carlo Tree Search
Monte Carlo Tree Search is a search algorithm which deter-
mines the best action to be taken in a game by iteratively
building and updating a tree of game states. Each itera-
tion consists of a) selecting moves, b) expanding nodes,
c) rollout (simulating the remainder of the game), and d)
back-propagation (updating the tree with node values).
These roughly correspond to the four required functions
of a BizMC module: perform creates the appropriate game
state after a move has been selected, expand generates
the child nodes (possible moves) that can be performed
from this new game state, rollout defines the logic for de-
termining moves in the rollout phase, and score generates
a value to be propagated back up the tree.

Specifically, BizMC uses a variant, the MCTS with Par-
tial Expansion. Unlike the standard MCTS, this algorithm
allows for the search to be performed without needing to
fully expand every node as it is encountered. This variant
is preferred for games with very high branching factors
(average number of possible moves per turn), as is the
case in most of the strategy games we developed modules

for. Each time a new node is created in the tree, a saves-
tate is created in BizHawk and saved in that node: this
is a "snapshot" of the gamestate at that point. Whenever
BizMC performs an action associated with a child of that
node, the savestate is loaded, restoring the gamestate in
BizHawk.

In selection, the value of a potential child is calculated
for children that have been visited before as:

node.val+
√
2 ·

√︃
2 log

(︂
parent.visits

child.visits

)︂
,

and for children that have never been visited as:

parent.val

2
+

√
2 ·

√︃
2 log

(︂
parent.visits

of child nodes

)︂
,

Pseudocode for BizMC’s implementation of the algo-
rithm is as follows:

for 𝑖 = 1, 𝑛 do
curNode = root
while curNode has a savestate do

if curNode has not been expanded then
load curNode’s savestate in BizHawk
populate curNode’s list of child nodes

end if
curNode = select(curNode)

end while
if the game has not yet ended then

load curNode’s parent state
perform the action associated with curNode
create savestate and assign to curNode

end if
if the game has ended then

mark curNode as terminal
else

perform rollout phase until game has ended
end if
result = game.score()
curNode.update(result)

end for
return best node

4. Results
While adding more games and refining our approach
is still an ongoing effort, we have already implemented
modules for three different games: Escape from the Mind-
master (1982) for the Atari 2600, Romance of the Three
Kingdoms II (1991) for the NES, and Onimusha Tactics
(2003) for the Game Boy Advance. Note that we split
the module for Romance of the Three Kingdoms II into
two parts, one for the “Recruit”-part of the game and one

Figure 3: A screenshot from Escape from the Mindmaster
(1982) for the Atari 2600. Note the map of the “maze“ in the
lower part of the screen.

for the “Battle”-part, as they have significantly different
actions and objectives.

4.1. Escape from the Mindmaster
In each stage of this simple 3D maze game, shown in
figure 3, four uniquely-shaped objects are to be returned
to their identically-shaped holes before exiting the stage;
the locations of both the objects and their holes are ran-
domized at the start of each stage: additionally, in each
stage there is a monster whose behavior is similarly ran-
domized, and colliding with it results in a game loss. As
only one object can be carried at a time, the moves possi-
ble at each node include grabbing an object and placing it
in its corresponding hole as a combined action, with the
optimal movement from one location to another deter-
mined using a pathfinding algorithm. As movement is in
three dimensions, the player character must take time to
turn left or right where necessary: they may travel back-
wards if it is faster to do so, with the caveat that doors
cannot be traversed in reverse. Because the monster may
cross our paths as we attempt to move across the map,

Figure 4: A screenshot from Romance of the Three Kingdoms
II (1991) for the Nintendo Entertainment System, showing the
recruitment part of the game

an additional action, Wait, is generated, which waits
one frame: this allows us to occasionally manipulate the
monster’s movement out of our way. BizMC was easily
able to find the fastest order of objects to place in each
stage, rarely needing to use the Wait action more than a
few frames per stage in its optimal solution to a level.

4.2. Romance of the Three Kingdoms II:
Recruit

In this historical strategy game, the player may have
each of their Generals in the active province perform one
action per turn: one such action is to attempt to recruit
a General from an enemy nation to their side using one
of four possible methods (Special, Horse, Gold or Letter),
with Special being a unique method available only to
their Leader. Each of these four methods uses a complex
formula to determine the percent chance of this action
succeeding, based on the statistics of both the Acting
and Targeted Generals. The game uses a pseudo-random
number generator: An initial seed value for the Random
Number Generator (RNG) is set based on which frame
the player starts the game, and its internal state only
advances when it is polled; thus, in a given game state,
we can tell which Recruit actions will succeed based on
whether or not the values generated by the corresponding
formulas are greater than the current RNG value mod
100. The string name of each Recruit action generated
for each node will have the format ACTING-TARGET-
METHOD, and only actions that we predict will succeed
need to be generated. However, not all Recruit actions
will actually succeed; as the acting general travels to

the target general’s province, there is a certain chance
that they will be captured in each intermediate province
they visit. Thus, not only do some Recruit actions fail
(and are thus rejected), but the number of times that the
RNG value advances after a Recruit action varies as it
is dependent on the number of provinces visited. This
means that there are frequently cases where there are no
viable Generals to be recruited: for these cases, we also
provide another action, Wait, which performs a menu
action that causes the RNG value to advance without
any other effect on the game state. This allows BizMC
to manipulate the RNG value in order to achieve more
difficult recruitments.

In this module, our objective function is the combined
relative strength of all of the recruited Generals. For this
purpose, we define the value of a general as the sum
of three of its crucial statistics: Intelligence, War, and
Charm. The process of performing each Action in this
module is normally time-consuming, as it requires select-
ing through several consecutive menus: thus, a shortcut
is used which bypasses normal game function and ex-
ecutes the desired function immediately. This game is
unusual in that it runs a virtual machine atop the native
6502 architecture: by directly altering game memory in
BizHawk, we are able to alter the VM’s program counter
and stack values, effectively calling the function with the
appropriate parameters. Using this method, BizMC was
able to quickly find a sequence of Recruit actions result-
ing in a set of extremely valuable General acquisitions.
As a demonstration of the deterministic behavior of the
Random Number Generator, several of these sequences
were replicated with human input on a physical console:
this helps confirm our claim that the shortcut taken by
BizMC did not cause the game’s functionality to diverge
from what would happen had it run “normally”. Unlike
in some other work [17], we actually embrace this ex-
ploitation of the RNG, if it is useful in actual game play,
and/or in a speedrun.

4.3. Romance of the Three Kingdoms II:
Battle

The game’s battle sequences take place on a hexagonal
grid occupied by both enemy and allied Generals, as
shown in figure 5. As an invading army, the goal is to
win in 30 in-game days, either by defeating all of the
enemy Generals or by occupying (moving onto) their
capital. Each General has a life total and is defeated
when that total reaches zero. The set of moves that can
be performed by each General on each day are to Wait,
Move to an adjacent tile, Attack an adjacent general,
Recruit an enemy general (similar to the previous mod-
ule), and Fire, which attempts to set a fire which may
spread across the map in a random fashion, influenced by
wind direction. Waiting passes the turn, but is sometimes

Figure 5: A screenshot from Romance of the Three Kingdoms
II (1991) for the Nintendo Entertainment System, showing the
battle-part of the game

necessary because it builds up Stamina necessary to cross
certain terrain types.

The battle module was tested on several battlefields
with varying army sizes, and BizMC was generally able
to locate a solution when the invading army had a signifi-
cant strength advantage over the defending army, taking
a direct path to the capital and defeating the enemy Com-
mander through direct attacks. In many cases, it made
use of the Recruit option to find opportunities to steal
enemy Generals, balancing power further in its favor.
When the strength difference was less substantial, how-
ever, BizMC still managed to win some battles through
a less orthodox method. Normally, capturing the enemy
capital to end the battle prematurely is difficult because
the enemy commander will remain fortified in it until
defeated; however, if a fire spreads onto the capital, the
commander will be forced to move to survive. This gives
the player a brief opportunity to move their own General
onto the capital just as the fire has passed. Because the
fire’s movement is heavily unpredictable, engineering
such a situation is impractical in normal human play.
However, like in the Recruit module, the Battle module
had methods of controlling the random number gener-
ator to its favor. Actions like Fire and Recruit advance
the RNG value even if they are not successful: in battles
where BizMC won through this method, it can be seen
performing these seemingly pointless actions as a way
of manipulating RNG behind the scenes.

This module also utilized a unique rollout function
that makes use of AI logic already written into the game.
During each battle, the game alternates between the at-
tacking and defending army, and branches into different

Figure 6: A screenshot from Onimusha Tactics (2003) for the
Game Boy Advance.

code depending on whether the given army is player or
CPU controlled. By using Lua to manipulate control flow,
it is possible to allow the game to have AI logic take over
for the player’s army during the rollout phase by tem-
porarily overriding a branch instruction. While the AI is
not particularly strong in this game, it is an obvious im-
provement over random execution, and having the army
controlled in this way since AI units execute their actions
quickly without needing to traverse through menus.

4.4. Onimusha Tactics
In this strategy RPG, shown in figure 6, the goal of each
stage is to defeat all enemies on the screen or defeat a
given Boss enemy. The movement is over a 2D plane, but
tiles vary in height to give the impression of 3D space.
The exact tiles a unit can move to or attack is dependent
on the geography: a unit cannot move directly to a tile
of a significantly different height, and units with ranged
attacks (e.g. bows) have the best attack range at high
elevations, but any solid objects in the way will block
their attack.

If a unit is not currently selected, the only available
action is Select Unit (selects a unit who has not used
up their turn); otherwise, the main menu actions for
the current unit are Move, Attack and Special Move,
each of which generates multiple possible actions with
string names ACTIONTYPE-X-Y, specifying the target
coordinates for the action. Special Moves are actions
unique to a specific character which have a special attack
range, but use up ability points and thus can only be used
a few times; these were generally not useful for the first
few stages of the game BizMC was tested on. One more
action, Issen, randomly triggers and replaces Special
Move on the menu: by selecting this, the next time the
unit is attacked they will preemptively respond with a
powerful counterattack.

Because of the large search space, it was necessary to
put limits in place as to which actions units took to pre-
vent behavior unlikely to improve the game state, namely
running into a corner and avoiding engaging the enemy.
Thus, behavior is governed as follows: if an enemy unit is
able to be attacked this turn, the unit must choose an at-
tack that does so, moving into position first if necessary;
otherwise, they must move into a position that places
them as close to an enemy unit as possible. Predictably,
BizMC did well on stages where there were only a few
units to control but struggled with larger party sizes,
even when units’ actions were restricted in this manner.
Two different objectives were tested: fastest completion,
and most experience gained. Since experience and levels
carry over between stages, we reasoned that perhaps it
was a better goal to choose a set of actions that made
the units collectively stronger in preparation for the next
stage. As each attack and special move grants players
experience, this changed the behavior of units slightly.
With the speed objective, the game often manipulated the
random Issen counterattack to quickly kill enemy units,
but this resulted in less net experience gained. In the
experience objective, enemies were instead taken down
by a series of weaker attacks, which collectively gained
a larger amount of experience. In addition, some units
have special moves which grant temporary stat boosts
to other units or heal them. While these were not use-
ful in the speed objective, they were used several times
in the experience objective as a way to gain additional
experience.

5. Conclusion and Future Work
While BizMC provides a useful interface for testing AI
techniques on arbitrary games, adding additional games
still requires significant reverse-engineering effort. While
we have already developed some methods of easing this
process, we are still working on creating better tools
for finding the appropriate RAM and ROM addresses
necessary for its modules to function. As our focus has
been the reverse-engineering process itself, Monte Carlo
Tree Search was used as a reasonable baseline to test with,
and – as we show above – performs well on the games
we have investigated so far. Nevertheless, by exposing a
common interface to the games, we want to enable the
application of other techniques in the future as well.

References
[1] P. Rohlfshagen, J. Liu, D. Perez-Liebana, S. M. Lu-

cas, Pac-man conquers academia: Two decades of
research using a classic arcade game, IEEE Trans-
actions on Games 10 (2017) 233–256.

[2] J. Togelius, Ai researchers, video games are your
friends!, in: International Joint Conference on Com-
putational Intelligence, Springer, 2015, pp. 3–18.

[3] S. Whiteson, B. Tanner, M. E. Taylor, P. Stone, Pro-
tecting against evaluation overfitting in empirical
reinforcement learning, in: 2011 IEEE symposium
on adaptive dynamic programming and reinforce-
ment learning (ADPRL), IEEE, 2011, pp. 120–127.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowling,
The arcade learning environment: An evaluation
platform for general agents, Journal of Artificial
Intelligence Research 47 (2013) 253–279.

[5] T. Schaul, A video game description language for
model-based or interactive learning, in: 2013 IEEE
Conference on Computational Inteligence in Games
(CIG), IEEE, 2013, pp. 1–8.

[6] T. S. Nielsen, G. A. Barros, J. Togelius, M. J. Nelson,
Towards generating arcade game rules with vgdl,
in: 2015 IEEE Conference on Computational Intelli-
gence and Games (CIG), IEEE, 2015, pp. 185–192.

[7] A. L. Samuel, Some studies in machine learning
using the game of checkers. ii—recent progress, IBM
Journal of research and development 11 (1967) 601–
617.

[8] B. D. Abramson, The expected-outcome model of
two-player games, Ph.D. thesis, Columbia Univer-
sity, 1987.

[9] F. Van Lishout, G. Chaslot, J. W. Uiterwijk, Monte-
carlo tree search in backgammon, in: Computer
Games Workshop, 2007.

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
Mastering the game of go with deep neural net-
works and tree search, nature 529 (2016) 484–489.

[11] R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu,
D. Pérez-Liébana, Tag: A tabletop games frame-
work, in: AIIDE Workshops, 2020.

[12] TASVideos, BizHawk, https://github.com/
TASVideos/BizHawk, 2017. Accessed: 2022-07-25.

[13] S. Pham, K. Zhang, T. Phan, J. Ding, C. Dancy, Play-
ing snes games with neuroevolution of augmenting
topologies, in: Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

[14] H. Ho, V. Ramesh, E. T. Montano, Neuralkart: A
real-time mario kart 64 AI, 2017.

[15] NSA, Ghidra, https://github.com/
NationalSecurityAgency/ghidra, 2019. Accessed:
2022-08-10.

[16] pudii, gba-ghidra-loader, https://github.com/pudii/
gba-ghidra-loader, 2020. Accessed: 2022-08-10.

[17] J. Clark, D. Amodei, Faulty reward functions in
the wild, Internet: https://blog. openai. com/faulty-
reward-functions (2016).

https://github.com/TASVideos/BizHawk
https://github.com/TASVideos/BizHawk
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/pudii/gba-ghidra-loader
https://github.com/pudii/gba-ghidra-loader

	1 Introduction
	2 Background
	3 Approach
	3.1 Game Modules
	3.2 Monte Carlo Tree Search

	4 Results
	4.1 Escape from the Mindmaster
	4.2 Romance of the Three Kingdoms II: Recruit
	4.3 Romance of the Three Kingdoms II: Battle
	4.4 Onimusha Tactics

	5 Conclusion and Future Work

